
Volcano
smart contracts
preliminary audit report
for internal use only

April 2024

hashex.org

contact@hashex.org

Contents

Page 2 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

1. Disclaimer 3

2. Overview 4

3. Project centralization risks 6

4. Found issues 7

5. Contracts 9

6. Conclusion 17

Appendix A. Issues’ severity classification 18

Appendix B. Issue status description 19

Appendix C. List of examined issue types 20

Appendix D. Centralization risks classification 21

1. Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry

practice at the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework

and algorithms based on smart contracts, the details of which are set out in this report. In order to get a

full view of our analysis, it is crucial for you to read the full report. While we have done our best in

conducting our analysis and producing this report, it is important to note that you should not rely on

this report and cannot claim against us on the basis of what it says or doesn’t say, or how we produced

it, and it is important for you to conduct your own independent investigations before making any

decisions. We go into more detail on this in the disclaimer below – please make sure to read it in full.

By reading this report or any part of it, you agree to the terms of this disclaimer. If you do not agree to

the terms, then please immediately cease reading this report, and delete and destroy any and all

copies of this report downloaded and/or printed by you. This report is provided for information

purposes only and on a non-reliance basis and does not constitute investment advice. No one shall

have any right to rely on the report or its contents, and HashEx and its affiliates (including holding

companies, shareholders, subsidiaries, employees, directors, officers, and other representatives)

(HashEx) owe no duty of care towards you or any other person, nor does HashEx make any warranty or

representation to any person on the accuracy or completeness of the report. The report is provided "as

is", without any conditions, warranties, or other terms of any kind except as set out in this disclaimer,

and HashEx hereby excludes all representations, warranties, conditions, and other terms (including,

without limitation, the warranties implied by law of satisfactory quality, fitness for purpose and the use

of reasonable care and skill) which, but for this clause, might have effect in relation to the report. Except

and only to the extent that it is prohibited by law, HashEx hereby excludes all liability and responsibility,

and neither you nor any other person shall have any claim against HashEx, for any amount or kind of

loss or damage that may result to you or any other person (including without limitation, any direct,

indirect, special, punitive, consequential or pure economic loss or damages, or any loss of income,

profits, goodwill, data, contracts, use of money, or business interruption, and whether in delict, tort

(including without limitation negligence), contract, breach of statutory duty, misrepresentation

(whether innocent or negligent) or otherwise under any claim of any nature whatsoever in any

jurisdiction) in any way arising from or connected with this report and the use, inability to use or the

results of the use of this report, and any reliance on this report. The analysis of the security is purely

based on the smart contracts alone. No applications or operations were reviewed for security. No

product code has been reviewed. HashEx owns all copyright rights to the text, images, photographs,

and other content provided in the following document. When using or sharing partly or in full, third

parties must provide a direct link to the original document mentioning the author (hashex.org).

Page 3 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

https://hashex.org

2. Overview

HashEx was commissioned by the Volcano team to perform an audit of their smart contracts.

The audit was conducted between 07/04/2024 and 10/04/2024

The purpose of this audit was to achieve the following:

Identify potential security issues with smart contracts

Formally check the logic behind given smart contracts.

Information in this report should be used for understanding the risk exposure of

smart contracts, and as a guide to improving the security posture of smart contracts by

remediating the issues that were identified.

The code was provided directly in .sol files. The SHA-1 hashes of the audited files are:

SmartChef.sol a4fa50201bb1cdaff4f06307eee899dea3b7a9e3

vault.sol 581823cb65b1dc7870337892ee43b4aaf7099b1

8

Page 4 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

2.1 Summary

Project name Volcano

Platform Blast

Language Solidity

Centralization level High

Centralization risk High

2.2 Contracts

Name Address

SmartChef

Vault

Page 5 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

3. Project centralization risks

Cd0CR1e Owner privileges

- The contract owner can update the vault address. The vault receives all yiedls for WETH and

USDB deposited to the contract. Setting the wrong vault address will also break deposits.

- Set arbitrary big reward per block. Setting the reward to an extremely big value will devaluate

the token.

- Update minimum deposit per user. Setting it the an extremely big value will block deposits.

- Update rate that goest to the Vault on withdrawals up to 0.03%.

- Turn on and off emergency withdrawals.

- Finish the reward token distribution.

Cd1CR1f Owner privileges

- The contract owner can set arbitrary big reward rates for the WETH and USDB deposits.

Setting them to extremely high value will allow a user who requests rewards first to take all the

rewards currently on the contract.

- The contract owner can update the farm address.

Page 6 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

4. Found issues

13
Total issues

High 1 (8%)

Medium 4 (31%)

Low 5 (38%)

Info 3 (23%)

Cd0. SmartChef

ID Severity Title Status

Cd0I4c High Lack of constraints on reward per block Open

Cd0I4e Medium Calling the deposit() function with zero

amount will effectively burn reward

tokens to user

Open

Cd0I4d Medium Inconsistent documentation Open

Cd0I4f Low Lack of events Open

Cd0I50 Low Gas optimizations Open

Cd0I52 Info Non conventional naming Open

Cd0I51 Info No way to set the minimum deposit for a

pool smaller

Open

Page 7 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

Cd1. Vault

ID Severity Title Status

Cd1I5d Medium Same amount of interest reward is

distributed for users with and without an

inviter

Open

Cd1I68 Medium Rewards after SmartChef farming end Open

Cd1I60 Low Gas optimizations Open

Cd1I5f Low Lack of events Open

Cd1I5e Low Result of token transfers is not checked Open

Cd1I63 Info The rewards are not guaranteed Open

Page 8 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

5. Contracts

Cd0. SmartChef

Overview

A MasterChef-like contract for one pool. The pool can be either for WETH or USDB tokens.

Users who stake in the pool receive additional rewards in the reward token. The reward token

(VCN in terms of the contract) has no constant mint rate, it is minted proportionally to the

amount of staked tokens.

Part of the tokens on withdrawal are sent to the Vault contract.

The contract has a minimum deposit feature. If a user deposits at once an amount of tokens

bigger than the minimum amount, he is eligible for additional reward distribution from the

Vault contract.

The USDB and WETH yields are distributed to the Vault contract.

Issues

OpenHighCd0I4c Lack of constraints on reward per block

The contract mints rewards token proportionally the amount of staked token. The rate can be

changed by the contract owner.

 function updateRewardPerBlock(uint256 _rewardPerBlock) external onlyOwner { //�

��

 _updatePool();

 rewardPerBlock = _rewardPerBlock;

 emit NewRewardPerBlock(_rewardPerBlock);

 }

Setting the rewardPerBlock to an extremely big value means high mint rate and token

Page 9 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

devaluation.

Recommendation

Add an upper constraint for the _rewardPerBlock parameter to avoid setting it to an extremely

big value.

OpenMediumCd0I4e Calling the deposit() function with zero amount
will effectively burn reward tokens to user

If a user calls the deposit() function with zero amount or the depositEth() function without

passing native currency the contract sets the unclaimed VCN token rewards to zero. However,

it does not distribute the accumulated rewards to the user before resetting the amount. This

behavior results in the loss of unclaimed rewards that the user has earned.

 function deposit(uint256 _amount) public nonReentrant {

 ...

 if (user.amount > 0) {

 uint256 pending = user.amount * accTokenPerShare / 1e18 - user.rewardDebt;

 if (pending > 0) {

 IVCN(address(rewardToken)).mint(address(msg.sender), pending);

 rewardClaimed[msg.sender] += pending;

 }

 }

 user.rewardDebt = user.amount * accTokenPerShare / 1e18;

 ...

Recommendation

Update the user reward debt only if the rewards were sent to the user.

OpenMediumCd0I4d Inconsistent documentation

The variable rewardPerBlock is named to suggest that it represents a constant token mint rate

per block, implying a fixed number of tokens minted in each block. However, the contract

Page 10 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

does not operate as implied by this variable's name. Instead of minting a constant amount of

reward tokens per block, the contract mints an amount of VCN (the reward token) that is

proportional to the total amount of stake tokens deposited in the contract.

 // VCN tokens created per block.

 uint256 public rewardPerBlock;

Recommendation

Given the lack of comprehensive documentation, it is challenging to determine if the current

behavior of the rewardPerBlock variable is intentional.

If the Behavior is Intentional:

Update the in-code documentation to provide a clear and detailed explanation of the

variable's functionality, ensuring that it accurately reflects the proportional minting

mechanism.

Rename the variable to more accurately reflect its operational logic.

If the Behavior is Unintentional:

Adjust the contract's logic to align with the expected constant token mint rate per

block, if that is the intended functionality.

OpenLowCd0I4f Lack of events

The functions setVault(), setFeeRate(), setEmergencySwitch(), stopReward() change

important variable in the contract storage, but no event is emitted.

We recommend adding events to these functions to make it easier to track their changes

offline.

Page 11 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

OpenLowCd0I50 Gas optimizations

 - The PRECISION_FACTOR constant is not used.

 - The RewardsStop event is not used.

 - The NewStartAndEndBlocks event is not used.

 - no need to update the rewardDebt value in claim() function if pending is zero.

- startBlock, rewardToken, stakedToken can be set immutable.

- Multiple reads from storage of the same values. Use memoization.

OpenInfoCd0I52 Non conventional naming

The constant variables RateBase and blocksPerYear do not adhere to Solidity naming

conventions for constants. We recommend renaming them to uppercase with underscores to

improve readability and consistency with Solidity standards. The suggested names would be

RATE_BASE and BLOCKS_PER_YEAR.

OpenInfoCd0I51 No way to set the minimum deposit for a pool
smaller

The smart contract lacks a mechanism to reduce the minimum deposit amount once it is set. If

the minimum deposit threshold is mistakenly configured to an excessively high value, it

effectively prevents any further deposits due to the inability to meet the elevated requirement.

 function updatePoolLimitPerUser(bool _hasUserLimit, uint256 _poolLimitPerUser)

external onlyOwner {

 require(hasUserLimit, "Must be set");

 if (_hasUserLimit) {

 require(_poolLimitPerUser > poolLimitPerUser, "New limit must be higher");

 poolLimitPerUser = _poolLimitPerUser;

Page 12 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

 } else {

 hasUserLimit = _hasUserLimit;

 poolLimitPerUser = 0;

 }

 emit NewPoolLimit(poolLimitPerUser);

 }

Cd1. Vault

Overview

A vault contract that receives parts of the user deposits to the SmartChef contract and yield

from USDB and WETH token deposits to the SmartChef contract.

The contract issues rewards in WETH and USDB tokens based on the amount of users'

claimed rewards in the SmartChef contract. The rate of these rewards is set by the contract

owner.

The contract includes a bonus distribution mechanism for the last five users who deposited an

amount exceeding the minimum required in the SmartChef contract. This bonus distribution

occurs no more frequently than once every three days.

The vault contract also implements a referral system for users who deposited in the SmartChef

contract.

Issues

OpenMediumCd1I5d Same amount of interest reward is distributed
for users with and without an inviter

The function claimInterestReward() calculates and distributes the reward to the users. It

calculates the reward amount separately for a user with and without an invite. However, the

calculated amount is the same.

Page 13 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

 function claimInterestReward(address _interestToken) external {

 require(_interestToken == WETH || _interestToken == USDB, "interest token must be

weth or usdb");

 address l1Inviter = inviteInfo[msg.sender].inviter;

 address l2Inviter = inviteInfo[l1Inviter].inviter;

 ...

 if(l1Inviter != address(0)){

 uint l1Amount = amount * distributeRate.l1InviteRate / inviteRateBase;

 userInviteReward[_interestToken][l1Inviter] += l1Amount;

 if(l2Inviter != address(0)){

 uint l2Amount = amount * distributeRate.l2InviteRate / inviteRateBase;

 userInviteReward[_interestToken][l2Inviter] += l2Amount;

 }

 uint userAmount = amount * (inviteRateBase - distributeRate.l1InviteRate -

distributeRate.l2InviteRate - distributeRate.vaultRate - distributeRate.luckyPoolRate) /

inviteRateBase;

 IERC20(_interestToken).transfer(msg.sender, userAmount);

 }else{

 uint userAmount = amount * (inviteRateBase - distributeRate.l1InviteRate -

distributeRate.l2InviteRate - distributeRate.vaultRate - distributeRate.luckyPoolRate) /

inviteRateBase;

 IERC20(_interestToken).transfer(msg.sender, userAmount);

 }

 }

Recommendation

A lack of documentation makes it hard to tell whether it is an intended behavior. If it is,

calculate the reward amount out of the if block.

OpenMediumCd1I68 Rewards after SmartChef farming end

The WETH and USDB rewards that a user is eligible to receive are calculated based on the

user's rewards in the SmartChef contract. Once the farming period in the SmartChef contract

concludes, the distribution of rewards ceases. Users who have claimed all their rewards in the

Vault contract will not be able to claim any subsequent rewards. However, the Vault contract

can still receive rewards, but these will not be distributed to the users.

Page 14 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

 function pendingInterestReward(address _interestToken, address _user) public view

returns(uint256){

 uint256 amount;

 address farm;

 if(_interestToken == WETH){

 farm = ethFarm;

 }else if(_interestToken == USDB){

 farm = usdbFarm;

 }else{

 return 0;

 }

 amount = IFarm(farm).rewardClaimed(_user) + IFarm(farm).pendingReward(_user);

 uint256 accInterestReward = amount * rewardPerBlockScale[_interestToken]; //@audit

 return accInterestReward - userInterestClaimed[_user][_interestToken];

 }

OpenLowCd1I60 Gas optimizations

- The index2User mapping is not used

- Multiple reads from storage of the same values. Use memoization.

OpenLowCd1I5f Lack of events

The functions setFarm(), setRewardPerBlockScale(), emergencyWithdraw()change important

variables in the contract storage, but no event is emitted.

We recommend adding events to these functions to make it easier to track their changes

offline.

OpenLowCd1I5e Result of token transfers is not checked

The contract does not check the returned results of the ERC20 transfer function.

 IERC20(_interestToken).transfer(msg.sender, userAmount);

Page 15 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

The ERC20 token standard mandates that the token transfer function should return a boolean

value indicating the success or failure of the token transfer. Typically, tokens are designed to

always return true, with the transaction failing if the transfer is unsuccessful. However, it is

considered best practice to robustly handle the return values to ensure reliability.

Additionally, it is important to note that some implementations of the ERC20 token do not

adhere strictly to the ERC20 standard and might not return a boolean upon transfer.

Consequently, to accommodate all scenarios, it is advisable to utilize a library that addresses

these variations, such as OpenZeppelin's SafeERC20, which provides a more secure and

standardized approach to handling ERC20 token transfers.

OpenInfoCd1I63 The rewards are not guaranteed

The amount of available rewards for users is not calculated based on the amount that the Vault

received but by the rates set by the contract owner. If the contract owner sets reward rates

smaller than needed, some WETH and USDB reward tokens won't be able to be claimed. If

the contract owner sets a bigger reward than needed, some users may not be able to get their

rewards as there won't be enough tokens on the vault contract.

Page 16 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

6. Conclusion

1 high, 4 medium, 5 low severity issues were found during the audit. No issues were resolved

in the update. The reviewed contracts are highly dependent on the owner’s account. See the

centralization risks chapter.

This audit includes recommendations on code improvement and the prevention of potential

attacks.

Page 17 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

Appendix A. Issues’ severity classification

Critical. Issues that may cause an unlimited loss of funds or entirely break the contract

workflow. Malicious code (including malicious modification of libraries) is also treated as a

critical severity issue. These issues must be fixed before deployments or fixed in already

running projects as soon as possible.

High. Issues that may lead to a limited loss of funds, break interaction with users, or other

contracts under specific conditions. Also, issues in a smart contract, that allow a privileged

account the ability to steal or block other users' funds.

Medium. Issues that do not lead to a loss of funds directly, but break the contract logic.

May lead to failures in contracts operation.

Low. Issues that are of a non-optimal code character, for instance, gas optimization tips,

unused variables, errors in messages.

Informational. Issues that do not impact the contract operation. Usually, informational

severity issues are related to code best practices, e.g. style guide.

Page 18 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

Appendix B. Issue status description

 Resolved. The issue has been completely fixed.

 Partially fixed. Parts of the issue have been fixed but the issue is not completely resolved.

 Acknowledged. The team has been notified of the issue, no action has been taken.

 Open. The issue remains unresolved.

Page 19 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

Appendix C. List of examined issue types

Business logic overview

Functionality checks

Following best practices

Access control and authorization

Reentrancy attacks

Front-run attacks

DoS with (unexpected) revert

DoS with block gas limit

Transaction-ordering dependence

ERC/BEP and other standards violation

Unchecked math

Implicit visibility levels

Excessive gas usage

Timestamp dependence

Forcibly sending ether to a contract

Weak sources of randomness

Shadowing state variables

Usage of deprecated code

Page 20 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

Appendix D. Centralization risks classification

Centralization level

High. The project owners can manipulate user's funds, lock user's funds on their will

(reversible or irreversible), or maliciously update contracts parameters or bytecode.

Medium. The project owners can modify contract's parameters to break some functions of

the project contract or contracts, but user's funds remain withdrawable.

Low. The contract is trustless or its governance functions are safe against a malicious owner.

Centralization risk

High. Lost ownership over the project contract or contracts may result in user's losses.

Contract's ownership belongs to EOA or EOAs, and their security model is unknown or out

of scope.

Medium. Contract's ownership is transferred to a contract with not industry-accepted

parameters, or to a contract without an audit. Also includes EOA with a documented

security model, which is out of scope.

Low. Contract's ownership is transferred to a well-known or audited contract with industry-

accepted parameters.

Page 21 of 22HashEx Blockchain Security | hashex.org

PRELIMINARY REPORT | Volcano

contact@hashex.org

@hashex_manager

blog.hashex.org

linkedin

github

twitter

mailto:contact@hashex.org
https://t.me/hashex_manager
https://blog.hashex.org
https://www.linkedin.com/company/hashex
https://github.com/HashEx
https://twitter.com/hashexofficial

